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ABSTRACT 

As one of Reinforcement Learning (RL), Q learning algorithm has 

been applied in many fields of dynamic programming, and its Q 

Neural Network (Q-NN) can map the states of the environment to 

the corresponding control actions. Q learning algorithm can reach 

or exceed human level in some video games[1]. Nevertheless, the 

function of a neural network is similar to a black box. When the 

network fails in some control tasks, the adjustment of the network 

by the people is very difficult to achieve[2]. In contrast, due to the 

semantic control rules of the Fuzzy Logic Controller (FLC), 

incorrect rules can be artificially adjusted, however, a completely 

manual control rules design is a burdensome task. Therefore, in this 

paper, we propose a new method for the FLC to learn rules from 

well-trained neural networks and then fine-tune incorrect rules 

based on human knowledge. Finally, we experimented with 

navigational task and showed that the FLC we designed is able to 

accomplish the task, which achieved all of the reaching-target goals 

in 100,000 tests. (all the experiments results and relative codes are 

available on https://github.com/inksci/logic-controller). 
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1. INTRODUCTION 
Reinforcement Learning (RL) can learn rules from a new 

environment independently without models and knowledge 

provided by human. In Q-learning, the Q neural network is trained 

over multiple learning cycles and the state action function 

 ,Q s a  is fitted using the following Bellman iteration rule: 

    , max ,
a

Q s a r Q s a


    . (1.1) 

In (1.1), s , a  and r are the current state, action and reward 

respectively; s  and a  are the next state and action;   is the 

discount parameter with a value between 0 and 1. The combination 

of deep learning and RL has been applied to play Atari games to 

achieve some excellent performance and reach the human level[1]. 

RL has shown great potential in control tasks, but robustness, as a 

key factor in the field of control, is hard to be guaranteed[3]. The 

role of the neural network is similar to a black box. We can train 

and use the neural network, but it's hard to fine-tune its rules[4]. 

In contrast, the fuzzy logic controller (FLC) uses fuzzy set to 

describe the environment with semantic description that can be 

understood by people, for example, describing distance as "close, 

near, far, or very far ". Its corresponding control rules are also 

semantic, such as "move to the left when the target is on the left" 

and Table 1 illustrates a type of FLC in tabular form[5]. Since the 

FLC is transparent, the rules for fuzzy logic controllers can be 

artificially designed[6]. However, more complex control tasks 

require many more control rules.  It is hard to design control rules 

based entirely on human knowledge, and errors will probably 

appear. 

Table 1 A type of fuzzy logic controller. 

Target Obstacle 

 far left close left close right far right 

far left left small right very 

big 

left very 

big 

left big 

close left left small right big left big left small 

close right right small right big left big right small 

far right right big right very 

big 

left very 

big 

right small 

 

In this paper, we used the Q learning algorithm to learn the control 

task in the first place. After sufficient training of the Q neural 

network, we let the FLC learn the control rules from the trained Q 

neural network and then fine-tune the incorrect control rules in the 

FLC. Our experiments showed that the performance improvement 

of network is not obvious in the latter part of Q learning algorithm 

training. Eventually, Q-NN experienced a failure of about 1.93% 

after 250,000 learning cycles. Logic controllers that learn rules 

from the neural network can completely overcome the same 

navigation task after manual tuning. 

The structure of this paper is as follows: section 2 explained the 

method for learning the rules of fuzzy logic controller from the 

well-trained network and gave the relevant algorithms; section 3 

describes how to optimize the design of fuzzy sets by using genetic 

algorithm; in section 4, the simulation of the navigation task under 

the obstacle avoidance conditions further explained the application 

of this method and verified the effectiveness of the method. Finally, 

section 5 summarized the research results of this paper and 

analyzed the problems in the method and the future research work. 

Related symbol definitions: 

s     A state that used in the Q learning algorithm. 

a     An action, which not only can be used within the Q learning 

algorithm, but also can be used within the FLC. 

A     A fuzzy set (or a fuzzy state), which is used within the FLC. 



     The value function for every combination of a fuzzy set A  

and an action a , and  ,A a  is used within the FLC. 

     The function which maps every state s  to a fuzzy set A . 

 arg max
x

f x   Operation: choose a value of x  that 

maximizes the value of f . 

2. LEARN THE RULES FROM THE 

FULLY TRAINED NEURAL NETWORK 
Reinforcement learning algorithms can learn the knowledge of 

environment autonomously and gain the ability to solve problems 

without the need to model the task[7]. Especially, the Q learning 

algorithm can adjust the parameters of the neural network through 

numerous action tempo. After sufficient training, the Q neural 

network (Q-NN) used can map each state to an optimal action 

accordingly; similarly, the FLC is also able to match each fuzzy set 

with an optimal action[8], as shown in Figure 1. 

 

 

Figure 1 The comparison of Q-NN and FLC in the applying of 

control. 

Fuzzy sets can be regarded as a combination of states obtained by 

clustering the states, that is, each state S  can be classified into a 

fuzzy set A : 

 s A   (2.1) 

Under the control of a neural network, each state is mapped to one 

action a : 

 s a   (2.2) 

If the neural network is well-trained, the mapping rules, as shown 

is  (2.2), are reasonable, so it can be deduced that in the fuzzy logic 

controller, there is the following mapping: 

 A a   (2.3) 

If there are states 1s , 2s  and actions 1a , 2a , the following 

conditions are met: 

 1 2s s   (2.4) 

 1 2a a   (2.5) 

The states 1s , 2s  belongs to the same fuzzy set A : 

 1 2,s s A   (2.6) 

And based on neural network mapping rules: 

 1 1s a   (2.7) 

 2 2s a   (2.8) 

For this situation, there will be two different actions 1a , 2a  for the 

same one fuzzy set A . However, the mapping rules in the fuzzy 

logic controller must be uniquely determined. In order to solve this 

problem, we define the function of FLC   and initialize it with 

zeros: 

  , 0 ,A a A a   . (2.9) 

The corresponding value in the function   is updated according 

to the following formula: 

 

    1 1, , +1A a A a    (2.10) 

    2 2, , +1A a A a    (2.11) 

 

Finally, for each fuzzy set A , the fuzzy logic controller will select 

the action which can let the value of   be the largest one as the 

best action, and the corresponding control rules are as follows: 

  argmax
a

A a    (2.12) 

In this way, we use a neural network to perform a task and 

constantly update the function   according to the corresponding 

mapping rules, resulting in an FLC that has almost the same 

function as the neural network. Not only that, in order to make the 

rules that FLC learned from neural network as correct as possible, 

in the actual algorithm, we initialize a state 0s  first. If the task can 

be completed under the control of neural network finally, reset the 

initial state with 0s  again; repeating the control process, and let the 

function  be updated, or otherwise initialize another new state. 

The whole algorithm for updating the function   is shown in 

Table 2. 

Table 2. The algorithm used for learning rules from networks. 

   1.     Initialize The Fuzzy Logic Controller  : 

   2.     set  (set, action)=0 for all sets, actions 

   3.     Learning The Control Rules from The Networks: 

   4.     for n epsilons: 

   5.         state s    reset environment 

   6.         for taking m steps: 

   7.             action   networks(state) 

   8.             state   taking one step by action 



   9.         end for 

  10.        if the agent reaching the target: 

  11.            reset environment with state s  

  12.            for taking m steps: 

  13.                state, action   taking one step 

  14.                s   classify this state into fuzzy set  

  15.                  ( s , action) += 1 

  16.            end for 

  17.        end if 

  18.    end for 

  19.    Map Sets into Actions using The Controller  : 

  20.    action   argmax( (set)) 

 

3. DESIGN AND OPTIMIZATION OF THE 

FUZZY SETS 
In this section, we mainly study how to classify the states into 

corresponding fuzzy sets, that is, the design of fuzzy sets[9]. We can 

use function  s  to represent the mapping of states to fuzzy 

sets: 

  s A    (3.1) 

In this paper, the design workflow of the FLC is shown in Figure 2 

(left). The quality of the fuzzy set will affect the final performance 

of the FLC. In order to make the performance of the controller good 

enough, the parameters of the function  s  can be constantly 

adjusted so as to continuously improve the performance of the 

controller. This is a non-linear optimization problem that can be 

solved using Genetic Algorithm (GA). The performance of the 

controller is defined as the objective function. With the evolution 

of the "population", we can finally make a well design of the fuzzy 

sets. The corresponding optimization process is shown in Figure 2 

(right). 

 

Figure 2 The design of fuzzy-sets using genetic algorithm. 

In the experimental section, we will show how to encode the 

parameters of  s  accordingly. The definition of the objective 

function is given here: In the FLC performance test, let the FLC 

control the task with 1000 rounds and get the final success rate. The 

success rate increases with the number of learning from the neural 

network, and after a considerable number of learning, the increase 

in success rate becomes slow, i.e., tends to be saturated. It can be 

considered that when the rate of increase of the success rate is 

below a certain threshold, it is deemed to be saturated, and the 

success rate multiplied by a proportional constant can be used as 

the value of the corresponding objective function.  

4. EXPERIMENTS 

4.1 Simulation Environment 
 

In order to validate the method proposed in this paper, we design a 

navigation task, as shown in Figure 3, where the obstacle is need to 

be avoided. 

 

 

Figure 3 The navigation task used for experiments. 

As shown in Figure 3, the obstacle, target, and agent are all squares 

with size of 1 1 . When the environment is reset, the center 

positions of the obstacle, target and the agent are randomly set 

within a range of 4 4  and they are not in contact with each other. 

The scope of activity of an agent, that is, the center of an agent, is 

constrained to a range of 6 6 . At each step, the agent can move 

upwards, downwards, to the right or to the left by a distance of 0.2, 

to reward 1.0 if the agent touches the target, to reward -1.0 if it 

collides with an obstacle, or else gets -0.1 reward. The number of 

steps of the Agent can move in each mission turn is a finite 

constant. 

4.2 Gene Coding 
We need to design a function that implements the mapping of states 

to fuzzy sets. For this navigation environment, we use 5 cut points, 

dividing each distance between agent and obstacle/target into 6 

parts (namely closest, closer, close, far, farther and furthest 

respectively). Adding the information of the orientation of 

obstacle/target, we get the fuzzy sets as partly illustrated in Table 

3. 

Table 3 The description of fuzzy sets. 

 Target Obstacle 

Orientation Distance Orientation Distance 

Description 1 left furthest above further 

Description 2 below far right closest 

     

 



Taking into account that the sizes of the obstacle, target and agent 

are all 1 1 , we let the position of the first cut point 1x  range from 

0-1.5 , the second cut point 2x  range from 1x to 1+1.5x , and 

so on. In this way, the length of the value range for each cut point 

is 1.5, and combine five gene fragments of the same length into one 

chromosome. Such chromosome is the equal description of the 

positions of the five cut points. In the end, we realized that we could 

express the function  s by gene coding, and optimize the 

function  s  in the process of evolution through the 

optimization of the gene. 

4.3 Fine-tune The Control Rules 
Within the FLC, control rules have specific semantics, which can 

be understood by people[10]. When a control rule is unreasonable, it 

can be modified artificially. While first of all, you need to find out 

these incorrect rules. In this navigation task, the incorrect rules will 

lead to the collision of the agent with the obstacle, or let the agent 

produce the "push-pull behavior" as shown in Figure 4. 

 

Figure 4 The "push-pull" behavior. 

In Figure 4, when the fuzzy state is 1A , the agent generates a 

rightward movement, resulting in a state transition to 2A , 

according to the control rule, the state 2A corresponds to an action 

that let the agent moves to the left, i.e., returns to the state 1A  

again. 

In each step, we let the corresponding state, action be printed out. 

When a collision occurs, it will cause the task to fail and exit the 

entire round. Obviously, the last control rule is wrong and the rule 

can be amended. When the "push and pull" occurs, the state and 

action will repeat every two times and ultimately the agent unable 

to achieve the goal until all the steps have been exhausted, so long 

as we just need make an analysis for the last two control rules. 

4.4 Results 

4.4.1 Comparison of Success Rates 
We conducted three different experiments successively, as shown 

in Figure 5. In Experiment 1, Q learning algorithm was used to 

learn the navigation tasks and to adjust the parameters of the neural 

network through a lot of training. Finally, the neural network which 

has been fully trained (with 350,000 learning cycles) was used to 

control the navigation tasks. In Experiment 2, using the method 

described in section 2, let the fuzzy logic controller learn the rules 

from the neural network and then use the fuzzy logic controller to 

control the navigation tasks. In Experiment 3, the incorrect rules of 

the FLC used in Experiment 2 were fine-tuned by human 

knowledge, and the fine-tuning FLC was tested. The success rate 

of Experiment 1 is about 98%, indicating that neural network can 

learn the environment and has a good ability to solve the task. The 

neural network's training curve is shown in Figure 6, and after 

approximately 250,000 learning cycles, the average reward no 

longer increases significantly with the number of training sessions, 

but remains almost unchanged. In Experiment 3, a large number of 

tests for the FLC with fine-tuning are made, the results show that 

all tasks can be completed, proved the robustness of this controller. 

 

Figure 5 The success rate of 3 experiments. 

 

 

Figure 6 The learning curve of Q-learning. 

In Figure 6, a "learning cycle" is defined as the process of an agent 

getting information from the environment and train its neural 

network start from an environmental reset to the next time when the 

environmental reset again. 

4.4.2 Comparison of Control Performance 
In Figure 7, (a) and (b) are the experimental results of using the Q-

NN for control, and (c) and (d) are the results of using the FLC for 

control. The initial environment settings in (c) and (d) are the same 

as (a) and (b), respectively, that is, the initial positions of the agent, 

target and obstacle are the same. The experimental results show that 

both control methods can find a short path to avoid obstacle and 

finally reach the target. In contrast, the motion trajectories obtained 

by using the FLC have fewer turning points and show better 

smoothness control performance than the neural networks. The 

reason for this is that one fuzzy set corresponds to many states and 

maps to one action. Using fuzzy logic controller can make multiple 

different states adopt the same action. In neural network, each state 



corresponds to its own action, and these actions may or may not be 

the same[11]. 

 

Figure 7 The performances of the FLC and the QNN. 

5. CONCLUSION AND DISCUSSION 
This paper presented a design method of fuzzy logic controller, 

which combined the advantages of the Q learning algorithm that 

can learn the control rules without relying on the task model and 

the advantages of the fuzzy logic controller that is transparent. 

Finally, a fuzzy logic controller is designed by using this method 

and applied to navigation tasks with obstacle avoidance. The 100% 

success rate of task completion in test is achieved through manual 

fine-tuning of the controller learned. In addition, the adjustment 

and optimization of fuzzy sets that based on genetic algorithm are 

also introduced. This shows that the method that realizes the design 

of the fuzzy logic controller using reinforcement learning algorithm 

can combine human knowledge with the autonomous exploration 

capabilities of machine learning, besides, it has unique potential in 

some areas of controlling. 

In the Experiment 3 as described before, the fine-tuning FLC test 

results show that it can achieve navigation function with obstacle 

avoidance with 100% success rate when there is only one obstacle 

and one target. If there are two or more obstacles, we take only the 

nearest distance considered in each direction, as shown in Figure 8, 

so that the original FLC can adapt to the situation of multiple 

obstacles. 

  

 

Figure 8 The situation with two obstacles. 

 

For the case of two obstacles, the experimental results are shown in 

Figure 9. (A) and (b) are the cases where there is only one obstacle, 

and the two obstacles in (c) are the same as the obstacles in (a) (b) 

respectively. The FLC is still able to complete the task, showing 

some flexibility. However, it can be seen that the FLC failed in (f) 

although the FLC fulfilled its mission in the case of an obstacle (d) 

and (e). Because FLC can only grasp the surrounding local 

information, but cannot make a program on the global level, it is 

hard to overcome the problem of local minimum[12]. 

 

Figure 9 The experiments of the FLC for different numbers of 

obstacles. 

For the navigation tasks in this paper, the fuzzy state of the FLC is 

represented by 4 relative orientations and 6 relative distances of the 

target and obstacle, corresponding to  
2

4 6   576   kinds 

of fuzzy states and 576 control rules. When the fuzzy state has a 

larger dimension, more rules need to be stored. In this case, the 

classification neural network can be used to fit the control rules. 

The fuzzy state is used as the training sample and the corresponding 

action is used as the training label, so that less parameters are used 

to represent all the control rules. 
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