
 A Design Method of Fuzzy Logic Controller by Using Q
Learning Algorithm

Xin Zhou*
College of Aerospace Science and

Engineering,

National University of Defense
Technology,

Changsha, 410073, P. R. China

inksci@outlook.com

Cai zhi Fan
College of Aerospace Science and

Engineering,

National University of Defense
Technology,

Changsha, 410073, P. R. China

caizhifan@nudt.edu.cn

Jun Wu
College of Aerospace Science and

Engineering,

National University of Defense
Technology,

Changsha, 410073, P. R. China

woshiwumingjun@163.com

ABSTRACT

As one of Reinforcement Learning (RL), Q learning algorithm has

been applied in many fields of dynamic programming, and its Q

Neural Network (Q-NN) can map the states of the environment to

the corresponding control actions. Q learning algorithm can reach

or exceed human level in some video games[1]. Nevertheless, the

function of a neural network is similar to a black box. When the

network fails in some control tasks, the adjustment of the network

by the people is very difficult to achieve[2]. In contrast, due to the

semantic control rules of the Fuzzy Logic Controller (FLC),

incorrect rules can be artificially adjusted, however, a completely

manual control rules design is a burdensome task. Therefore, in this

paper, we propose a new method for the FLC to learn rules from

well-trained neural networks and then fine-tune incorrect rules

based on human knowledge. Finally, we experimented with

navigational task and showed that the FLC we designed is able to

accomplish the task, which achieved all of the reaching-target goals

in 100,000 tests. (all the experiments results and relative codes are

available on https://github.com/inksci/logic-controller).

Keywords

Q learning; fuzzy logic controller; neural networks; genetic

algorithm; navigation.

1. INTRODUCTION
Reinforcement Learning (RL) can learn rules from a new

environment independently without models and knowledge

provided by human. In Q-learning, the Q neural network is trained

over multiple learning cycles and the state action function

 ,Q s a is fitted using the following Bellman iteration rule:

    , max ,
a

Q s a r Q s a


   . (1.1)

In (1.1), s , a and r are the current state, action and reward

respectively; s and a are the next state and action;  is the

discount parameter with a value between 0 and 1. The combination

of deep learning and RL has been applied to play Atari games to

achieve some excellent performance and reach the human level[1].

RL has shown great potential in control tasks, but robustness, as a

key factor in the field of control, is hard to be guaranteed[3]. The

role of the neural network is similar to a black box. We can train

and use the neural network, but it's hard to fine-tune its rules[4].

In contrast, the fuzzy logic controller (FLC) uses fuzzy set to

describe the environment with semantic description that can be

understood by people, for example, describing distance as "close,

near, far, or very far ". Its corresponding control rules are also

semantic, such as "move to the left when the target is on the left"

and Table 1 illustrates a type of FLC in tabular form[5]. Since the

FLC is transparent, the rules for fuzzy logic controllers can be

artificially designed[6]. However, more complex control tasks

require many more control rules. It is hard to design control rules

based entirely on human knowledge, and errors will probably

appear.

Table 1 A type of fuzzy logic controller.

Target Obstacle

 far left close left close right far right

far left left small right very

big

left very

big

left big

close left left small right big left big left small

close right right small right big left big right small

far right right big right very

big

left very

big

right small

In this paper, we used the Q learning algorithm to learn the control

task in the first place. After sufficient training of the Q neural

network, we let the FLC learn the control rules from the trained Q

neural network and then fine-tune the incorrect control rules in the

FLC. Our experiments showed that the performance improvement

of network is not obvious in the latter part of Q learning algorithm

training. Eventually, Q-NN experienced a failure of about 1.93%

after 250,000 learning cycles. Logic controllers that learn rules

from the neural network can completely overcome the same

navigation task after manual tuning.

The structure of this paper is as follows: section 2 explained the

method for learning the rules of fuzzy logic controller from the

well-trained network and gave the relevant algorithms; section 3

describes how to optimize the design of fuzzy sets by using genetic

algorithm; in section 4, the simulation of the navigation task under

the obstacle avoidance conditions further explained the application

of this method and verified the effectiveness of the method. Finally,

section 5 summarized the research results of this paper and

analyzed the problems in the method and the future research work.

Related symbol definitions:

s A state that used in the Q learning algorithm.

a An action, which not only can be used within the Q learning

algorithm, but also can be used within the FLC.

A A fuzzy set (or a fuzzy state), which is used within the FLC.

 The value function for every combination of a fuzzy set A

and an action a , and  ,A a is used within the FLC.

 The function which maps every state s to a fuzzy set A .

 arg max
x

f x Operation: choose a value of x that

maximizes the value of f .

2. LEARN THE RULES FROM THE

FULLY TRAINED NEURAL NETWORK
Reinforcement learning algorithms can learn the knowledge of

environment autonomously and gain the ability to solve problems

without the need to model the task[7]. Especially, the Q learning

algorithm can adjust the parameters of the neural network through

numerous action tempo. After sufficient training, the Q neural

network (Q-NN) used can map each state to an optimal action

accordingly; similarly, the FLC is also able to match each fuzzy set

with an optimal action[8], as shown in Figure 1.

Figure 1 The comparison of Q-NN and FLC in the applying of

control.

Fuzzy sets can be regarded as a combination of states obtained by

clustering the states, that is, each state S can be classified into a

fuzzy set A :

 s A (2.1)

Under the control of a neural network, each state is mapped to one

action a :

 s a (2.2)

If the neural network is well-trained, the mapping rules, as shown

is (2.2), are reasonable, so it can be deduced that in the fuzzy logic

controller, there is the following mapping:

 A a (2.3)

If there are states 1s , 2s and actions 1a , 2a , the following

conditions are met:

 1 2s s (2.4)

 1 2a a (2.5)

The states 1s , 2s belongs to the same fuzzy set A :

 1 2,s s A (2.6)

And based on neural network mapping rules:

 1 1s a (2.7)

 2 2s a (2.8)

For this situation, there will be two different actions 1a , 2a for the

same one fuzzy set A . However, the mapping rules in the fuzzy

logic controller must be uniquely determined. In order to solve this

problem, we define the function of FLC  and initialize it with

zeros:

  , 0 ,A a A a   . (2.9)

The corresponding value in the function  is updated according

to the following formula:

    1 1, , +1A a A a  (2.10)

    2 2, , +1A a A a  (2.11)

Finally, for each fuzzy set A , the fuzzy logic controller will select

the action which can let the value of  be the largest one as the

best action, and the corresponding control rules are as follows:

  argmax
a

A a  (2.12)

In this way, we use a neural network to perform a task and

constantly update the function  according to the corresponding

mapping rules, resulting in an FLC that has almost the same

function as the neural network. Not only that, in order to make the

rules that FLC learned from neural network as correct as possible,

in the actual algorithm, we initialize a state 0s first. If the task can

be completed under the control of neural network finally, reset the

initial state with 0s again; repeating the control process, and let the

function  be updated, or otherwise initialize another new state.

The whole algorithm for updating the function  is shown in

Table 2.

Table 2. The algorithm used for learning rules from networks.

 1. Initialize The Fuzzy Logic Controller  :

 2. set  (set, action)=0 for all sets, actions

 3. Learning The Control Rules from The Networks:

 4. for n epsilons:

 5. state s  reset environment

 6. for taking m steps:

 7. action  networks(state)

 8. state  taking one step by action

 9. end for

 10. if the agent reaching the target:

 11. reset environment with state s

 12. for taking m steps:

 13. state, action  taking one step

 14. s  classify this state into fuzzy set

 15.  (s , action) += 1

 16. end for

 17. end if

 18. end for

 19. Map Sets into Actions using The Controller  :

 20. action  argmax( (set))

3. DESIGN AND OPTIMIZATION OF THE

FUZZY SETS
In this section, we mainly study how to classify the states into

corresponding fuzzy sets, that is, the design of fuzzy sets[9]. We can

use function  s to represent the mapping of states to fuzzy

sets:

  s A  (3.1)

In this paper, the design workflow of the FLC is shown in Figure 2

(left). The quality of the fuzzy set will affect the final performance

of the FLC. In order to make the performance of the controller good

enough, the parameters of the function  s can be constantly

adjusted so as to continuously improve the performance of the

controller. This is a non-linear optimization problem that can be

solved using Genetic Algorithm (GA). The performance of the

controller is defined as the objective function. With the evolution

of the "population", we can finally make a well design of the fuzzy

sets. The corresponding optimization process is shown in Figure 2

(right).

Figure 2 The design of fuzzy-sets using genetic algorithm.

In the experimental section, we will show how to encode the

parameters of  s accordingly. The definition of the objective

function is given here: In the FLC performance test, let the FLC

control the task with 1000 rounds and get the final success rate. The

success rate increases with the number of learning from the neural

network, and after a considerable number of learning, the increase

in success rate becomes slow, i.e., tends to be saturated. It can be

considered that when the rate of increase of the success rate is

below a certain threshold, it is deemed to be saturated, and the

success rate multiplied by a proportional constant can be used as

the value of the corresponding objective function.

4. EXPERIMENTS

4.1 Simulation Environment

In order to validate the method proposed in this paper, we design a

navigation task, as shown in Figure 3, where the obstacle is need to

be avoided.

Figure 3 The navigation task used for experiments.

As shown in Figure 3, the obstacle, target, and agent are all squares

with size of 1 1 . When the environment is reset, the center

positions of the obstacle, target and the agent are randomly set

within a range of 4 4 and they are not in contact with each other.

The scope of activity of an agent, that is, the center of an agent, is

constrained to a range of 6 6 . At each step, the agent can move

upwards, downwards, to the right or to the left by a distance of 0.2,

to reward 1.0 if the agent touches the target, to reward -1.0 if it

collides with an obstacle, or else gets -0.1 reward. The number of

steps of the Agent can move in each mission turn is a finite

constant.

4.2 Gene Coding
We need to design a function that implements the mapping of states

to fuzzy sets. For this navigation environment, we use 5 cut points,

dividing each distance between agent and obstacle/target into 6

parts (namely closest, closer, close, far, farther and furthest

respectively). Adding the information of the orientation of

obstacle/target, we get the fuzzy sets as partly illustrated in Table

3.

Table 3 The description of fuzzy sets.

 Target Obstacle

Orientation Distance Orientation Distance

Description 1 left furthest above further

Description 2 below far right closest

Taking into account that the sizes of the obstacle, target and agent

are all 1 1 , we let the position of the first cut point 1x range from

0-1.5 , the second cut point 2x range from 1x to 1+1.5x , and

so on. In this way, the length of the value range for each cut point

is 1.5, and combine five gene fragments of the same length into one

chromosome. Such chromosome is the equal description of the

positions of the five cut points. In the end, we realized that we could

express the function  s by gene coding, and optimize the

function  s in the process of evolution through the

optimization of the gene.

4.3 Fine-tune The Control Rules
Within the FLC, control rules have specific semantics, which can

be understood by people[10]. When a control rule is unreasonable, it

can be modified artificially. While first of all, you need to find out

these incorrect rules. In this navigation task, the incorrect rules will

lead to the collision of the agent with the obstacle, or let the agent

produce the "push-pull behavior" as shown in Figure 4.

Figure 4 The "push-pull" behavior.

In Figure 4, when the fuzzy state is 1A , the agent generates a

rightward movement, resulting in a state transition to 2A ,

according to the control rule, the state 2A corresponds to an action

that let the agent moves to the left, i.e., returns to the state 1A

again.

In each step, we let the corresponding state, action be printed out.

When a collision occurs, it will cause the task to fail and exit the

entire round. Obviously, the last control rule is wrong and the rule

can be amended. When the "push and pull" occurs, the state and

action will repeat every two times and ultimately the agent unable

to achieve the goal until all the steps have been exhausted, so long

as we just need make an analysis for the last two control rules.

4.4 Results

4.4.1 Comparison of Success Rates
We conducted three different experiments successively, as shown

in Figure 5. In Experiment 1, Q learning algorithm was used to

learn the navigation tasks and to adjust the parameters of the neural

network through a lot of training. Finally, the neural network which

has been fully trained (with 350,000 learning cycles) was used to

control the navigation tasks. In Experiment 2, using the method

described in section 2, let the fuzzy logic controller learn the rules

from the neural network and then use the fuzzy logic controller to

control the navigation tasks. In Experiment 3, the incorrect rules of

the FLC used in Experiment 2 were fine-tuned by human

knowledge, and the fine-tuning FLC was tested. The success rate

of Experiment 1 is about 98%, indicating that neural network can

learn the environment and has a good ability to solve the task. The

neural network's training curve is shown in Figure 6, and after

approximately 250,000 learning cycles, the average reward no

longer increases significantly with the number of training sessions,

but remains almost unchanged. In Experiment 3, a large number of

tests for the FLC with fine-tuning are made, the results show that

all tasks can be completed, proved the robustness of this controller.

Figure 5 The success rate of 3 experiments.

Figure 6 The learning curve of Q-learning.

In Figure 6, a "learning cycle" is defined as the process of an agent

getting information from the environment and train its neural

network start from an environmental reset to the next time when the

environmental reset again.

4.4.2 Comparison of Control Performance
In Figure 7, (a) and (b) are the experimental results of using the Q-

NN for control, and (c) and (d) are the results of using the FLC for

control. The initial environment settings in (c) and (d) are the same

as (a) and (b), respectively, that is, the initial positions of the agent,

target and obstacle are the same. The experimental results show that

both control methods can find a short path to avoid obstacle and

finally reach the target. In contrast, the motion trajectories obtained

by using the FLC have fewer turning points and show better

smoothness control performance than the neural networks. The

reason for this is that one fuzzy set corresponds to many states and

maps to one action. Using fuzzy logic controller can make multiple

different states adopt the same action. In neural network, each state

corresponds to its own action, and these actions may or may not be

the same[11].

Figure 7 The performances of the FLC and the QNN.

5. CONCLUSION AND DISCUSSION
This paper presented a design method of fuzzy logic controller,

which combined the advantages of the Q learning algorithm that

can learn the control rules without relying on the task model and

the advantages of the fuzzy logic controller that is transparent.

Finally, a fuzzy logic controller is designed by using this method

and applied to navigation tasks with obstacle avoidance. The 100%

success rate of task completion in test is achieved through manual

fine-tuning of the controller learned. In addition, the adjustment

and optimization of fuzzy sets that based on genetic algorithm are

also introduced. This shows that the method that realizes the design

of the fuzzy logic controller using reinforcement learning algorithm

can combine human knowledge with the autonomous exploration

capabilities of machine learning, besides, it has unique potential in

some areas of controlling.

In the Experiment 3 as described before, the fine-tuning FLC test

results show that it can achieve navigation function with obstacle

avoidance with 100% success rate when there is only one obstacle

and one target. If there are two or more obstacles, we take only the

nearest distance considered in each direction, as shown in Figure 8,

so that the original FLC can adapt to the situation of multiple

obstacles.

Figure 8 The situation with two obstacles.

For the case of two obstacles, the experimental results are shown in

Figure 9. (A) and (b) are the cases where there is only one obstacle,

and the two obstacles in (c) are the same as the obstacles in (a) (b)

respectively. The FLC is still able to complete the task, showing

some flexibility. However, it can be seen that the FLC failed in (f)

although the FLC fulfilled its mission in the case of an obstacle (d)

and (e). Because FLC can only grasp the surrounding local

information, but cannot make a program on the global level, it is

hard to overcome the problem of local minimum[12].

Figure 9 The experiments of the FLC for different numbers of

obstacles.

For the navigation tasks in this paper, the fuzzy state of the FLC is

represented by 4 relative orientations and 6 relative distances of the

target and obstacle, corresponding to  
2

4 6 576  kinds

of fuzzy states and 576 control rules. When the fuzzy state has a

larger dimension, more rules need to be stored. In this case, the

classification neural network can be used to fit the control rules.

The fuzzy state is used as the training sample and the corresponding

action is used as the training label, so that less parameters are used

to represent all the control rules.

6. REFERENCES
[1] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level

control through deep reinforcement learning.[J]. Nature,

2015, 518(7540):529.

[2] Althoefer K, Krekelberg B, Husmeier D, et al.

Reinforcement learning in a rule-based navigator for robotic

manipulators[J]. Neurocomputing, 2001, 37(1):51-70.

[3] Barto A G. Reinforcement learning[M]// Reinforcement

Learning. Springer Berlin Heidelberg, 1998:665-685.

[4] Mitaim S, Kosko B. The shape of fuzzy sets in adaptive

function approximation[J]. IEEE Transactions on Fuzzy

Systems, 2001, 9(4):637-656.

[5] Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft

Computing-A Computational Approach to Learning and

Machine Intelligence [Book Review][J]. Automatic Control

IEEE Transactions on, 2002, 42(10):1482-1484.

[6] Flores H, Srirama S. Adaptive code offloading for mobile

cloud applications:exploiting fuzzy sets and evidence-based

learning[C]// Proceeding of the fourth ACM workshop on

Mobile cloud computing and services. ACM, 2013:9-16.

[7] Beom H R, Cho K S. A sensor-based navigation for a mobile

robot using fuzzy logic and reinforcement learning[J].

Systems Man & Cybernetics IEEE Transactions on, 1995,

25(3):464-477.

[8] Driankov D, Saffiotti A, Fahrzeugnavigation, et al. Fuzzy

Logic Techniques for Autonomous Vehicle Navigation[J].

Studies in Fuzziness & Soft Computing, 2001, 61.

[9] Pradhan S K, Parhi D R, Panda A K. Fuzzy logic techniques

for navigation of several mobile robots[J]. Applied Soft

Computing, 2009, 9(1):290-304.

[10] Benyettou Y D A. Fuzzy Reinforcement Learning[J].

International Journal of Modern Physics C, 2002,

13(05):659-674.

[11] Juang C F, Lin J Y, Lin C T. Genetic reinforcement learning

through symbiotic evolution for fuzzy controller design.[C]//

IEEE International Conference on Fuzzy Systems

Proceedings, 1998. IEEE World Congress on Computational

Intelligence. IEEE, 2000:1281-1285 vol.2.

[12] Ye C, Yung N H C, Wang D. A fuzzy controller with

supervised learning assisted reinforcement learning

algorithm for obstacle avoidance[J]. IEEE Transactions on

Systems Man & Cybernetics Part B Cybernetics A

Publication of the IEEE Systems Man & Cybernetics

Society, 2003, 33(1):17.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

Authors’ background
Your Name Title* Research Field Personal website

Xin Zhou master student reinforcement learning and
manipulator control

Cai zhi Fan associate professor intelligent control and visual
servo

Jun Wu lecturer multi-agent reinforcement
learning

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate
professor, full professor

